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Some results ate presented from a theoretical and experimental study of heat ex- 
change during the impact of drops against a hot surface. 

Explaining the basic laws governing the interaction of a flow of drops with a heated 
surface is important for calculating and designing heat-and-power engineering equipment which 
employs drop cooling [i, 2]. At the same time, study of heat exchange between drops and a 
hot surface is interesting for developing methods of controlling drop flows and changing their 
parameters. The extensive literature devoted to drop cooling has mainly examined aspects of 
heat exchange of drops with a surface, while in many cases it is important to know the degree 
of heating of drops reflected from the surface. 

The present article studies the mechanism of interaction of drops with a heated surface 
and determinines the temperature of the liquid after its reflection. 

We proceeded on the basis of the following considerations in our theoretical study. A 
drop striking the surface flows over it. In conformity with heat-conduction theory, the 
temperature at the contact boundary is established almost instantaneously and depends on the 
thermal activities of the material of the hot surface and the incident liquid, as well as on 
their initial temperature [3]. When the temperature of the surface exceeds the Leidenfrost 
point, an intervening film of vapor is formed on the surface as the drop impinges on it. 
Heat is transferred to the drop through this film. The pressure established in the intecac- 
tion zone corresponds to the sum of the ambient pressure and the pressure created by the de- 
celeration of the drop. However, the latter, the stagnation pressure, is negligible compared 
to the atmospheric pressure because the velocity of the drop is limited by the requirement 
We < 80 [4], which is a sufficient condition for preventing breakup of the drop. Thus, we 
will henceforth ignore this effect. As a result, the temperature of the liquid-vapor boundary 
should be considered known and equal to the saturation temperature. Then the question of the 
heating of the drop reduces to determination of the law governing its flow over time. 

Three models of interaction were examined to obtain theoretical relations. 

In accordance with the first, tenetatively titled "segment" model~ drops retain the form 
of spherical segment (Fig. la) during the entire interaction. Its volume in this case is con- 
sidered to be constant (the slight change due to evaporation will be ignored), and the area 
of the interaction zone is completely determined by the height of the segment: 

~- 8-~---h~ , (1) 

where h is related to the position of the center of mass by the equation 

Horn= ~ + h~ (2) 
3 48R~ 

In turn, the law of change in the position of the center of mass is determined by the expres- 
sion 

dS d2Hcm 
o -- -- m - -  (3) 

dHcm d* 2 , 

here 
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Fig. i. Change in configuration of drop with different models of 
interaction: a) "segment" model; b) "oval" model; c) "immersion" 
model. 

S - -  16~R~ + ~h___J_ 2 (4) 
3h 3 

The solution of system (2)-(4), with a known initial drop velocity, makes it possible 
to determine the complete time of interaction of the drop and the law of change in its height 
over time, which then makes it possible to use Eq. (i) to determine S' = f(T). 

The second, "oval" model assumes, in contrast to the first model, that the drop takes 
an oval shape (Fig. ib). In this case the dependence of the interaction area on the position 
of the center of mass is found from the equation 

~ (5) 
16 2 Hcm ~ 2 Hcm 4 

w h i l e  the  t o t a l  s u r f a c e  a r e a  o f  t he  d rop  

(6) ~ a 

We assume that the rate of advance of the phase boundary is very low compared to the 
velocity of the temperature front inside the drop and that the effect of convective heat 
transfer in the liquid phase can be completely ignored. In actuality, there is still heat 
transferred by radiation. However, under normal conditions such heat transfer is fairly small 
and can be allowed for when necessary. 

A specific feature of the problem is that the temperature on the surface of interaction 
of the drop, despite the complexity of the mechanism of the process in equation, depends only 
on the phase transformation pressure and in our case remains constant. Also, in view of the 
short time the drop is on the surface, it can be assumed that the temperature front does not 
reach the outer boundary of the drop. The latter, therefore, can be regarded as a semiinfinite 
region. Thus, we arrive at a familiar problem of heat conduction with boundary conditions of 
the first kind. 

For the two above-examined models, due to the complexity of the law of change in the 
interaction surface over time (Eqs. (i), (5), and (3)), the solution can be obtained only in 
numerical form. 

We write the following for the amount of heat transferred to the drop and the increment 
in temperature: 

S" 

Q_ 2VTV~At,V~ .[ V(~f- ~1 dS, (7) 
0 

At - 3 0  ( s )  
4nR~cp 

Figure ic shows the configuration of the third model, tentatively called the "immersion" 
model. The character of the deformation that occurs is determined by the equality of the 
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Fig .  2. Diagram of  e x p e r i m e n t a l  s t a n d .  

volumes of an imaginary spherical segment with a diametrical cross section ma and an annular 
figure with a cross section ml. 

Simple geometric considerations show that the surface area of the zone of interaction 
of the drop with the heated surface is determined as 

4R~--h  2 +  ( 4 R ~ §  3 -  3Ro h2) 6 o j  
s '  = ( 9 )  

2 

Here we assume that during the final shaping of the drop its kinetic energy is transformed 
into interfacial energy, so that there is an increment in the surface: 

~ h 3 3Ro h2) pv~ A S = ~ - ( 4 R o +  - -  - ~ - .  (10) 

If we assume that the velocity of the uppermost point of the drop remains constant dur- 
ing the entire interaction and changes sign only during reflection, i.e~ the time of inter- 
action of the drop on the surface is determined as 

~f = 2Ro/Vf ' (ii) 

then the equation of motion (3) can be excluded from our examination and theproblem of drop 
heating can be completely solved analytically. 

The expression for the increase in the temperature of the reflected drop is 

2R0 

j K(2R0--v~)3 1 
At = F~ R~ 0 

A series of experiments was conducted on a special stand (Fig. 2) to determine the degree of 
heating of a drop reflected from a surface. A flow of monodisperse drops is directed per- 
pendicular or at an acute angle to a flat heated surface i. The drop size is kept constant 
by superimposing lengthwise mechanical oscillations on the stream of liquid (Rayleigh separa- 
tion) [5]. Since the relaxation time of the surface temperature should be shorter than the 
interval between two successive impacts of drops at a given point of the surface, it is neces- 
sary to create a thinned flow of drops. We did this by supplementing the lengthwise high- 
frequency oscillations with transverse low-frequency oscillations, the latter also being 
superimposed on the stream coming from the capillary tube 2 [6]. Individual monodisperse 
drops were sampled by means of collimator slits on a thermohydrophobic surface 3. The method 
just described is simpler and more reliable than the method presently used [7] and makes it 
possible to obtain a wide range of flow densities. The increase in the temperature of the 
liquid was measured by collecting drops reflected from the surface in a nearby mirrored 
vessel 4 with a built-in thermocouple leading to potentiometer 5. The cold junction of the 
thermocouple was placed in the vessel containing the initial liquid. The effect of radiant 
heat exchange between the vessel and the heated plate was eliminated by installing a double 
shield 6 with a hole to permit passage of the drops. The stainless steel plate serving as the 
heated surface was heated by an alternating current of several hundred amperes supplied from 
a transformer 7 by a method similar to that described in [8]. The plate temperature was set 
by changing the voltage in the primary winding of the transformer with voltage regulator 8. 
Plate temperature was measured by inserting two thermocouples 9 into the back side of the 
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Fig. 3. Dependence of the increase in the temperature of the 
drops reflected from the heated surface on their normal impact 
velocity at with R0 = 3.7.10 -4 m. Interaction models: I) 
"segment"; 2) "oval"; 3) "immersion"; points -- experiment. 
vf, m/sec; At, =C. 

Fig. 4. Dependence of the increase in the temperature of 
drops reflected from the heated surface on drop radius for the 
"immersion" model. Normal impact velocities of the drops at 
the surface: i) 0.i m/sec; 2) 0.7; 3) 2.9; points denote ex- 
periment; curves denote calculation. Ro'10-4; At, ~ 

plate 1 mm from the surface being sprayed. One thermocouple was connected to a portable 
PP-63 potentiometer, while the other was connected to an automatic KSP-4 potentiometer. The 
voltage on the working section of the plate was measured by a voltmeter I0, while current 
was measured with calibrated shunts Ii and ammeters 12. The water was supplied by a peri- 
staltic metering pump. Drop velocity was determined by calculation, by measurement using 
high-speed filming, and by a photoelectric method based on measurement of the time of pass- 
age of the drops over the section between two photodiodes located along the flow. The latter 
were installed so that the flow of drops passed above their working surface, which was posi- 
tioned coaxially with regard to the light source. The readimgs of the photodiodes were re- 
corded by a frequency meter. A thermostat 13 was used to keep the temperature of the out- 
flowing liquid constant. 

In the experiment we varied the plate temperature, the velocity of the thinned flow of 
monodisperse drops, the angle of inclination of the flow to the plate, and the drop radius. 

Figures 3 and 4 compare the test data with calculated results for the models examined. 

It is evident from Fig. 3 that only the "immersion" model gives a satisfactory agreement 
between the theoretical and empirical results. The presence of the minimum is due to the 
fact that the time of interaction of the drops with the surface changes in inverse proportion 
to vf, while the surface area of the interaction zone changes roughly in proportion to v~. 

It is interesting to note the weak dependence of the temperature change on radius (Fig. 
4). 

Also important is the practical independence of drop heating (and, thus, the heat-trans- 
fer rate) on the temperature of the heated surface in the temperature region above the Leiden- 
frost point. This agrees with the findings of other authors [8]. 

NOTATION 

Hcm , height of center of mass of drop at given moment of time; h, height of drop at 
given moment of time; Ro, initial radius of drop; S, total surface area; S', area of inter- 
face between drop and heated surface during interaction; ~,, ~, diametrical cross sections 
of deformed parts of a drop; ~f, time of impingement of a drop on heated surface; T, running 
time of impingement of drop on heated surface; m, mass; o, surface tension of drop; p, c, ~, 
density, heat content, and thermal conductivity of water; vf, normal velocity of impact of 
drop on heated surface; Q, quantity of heat; At, increase in the temperature of the reflected 
drop; At', difference between phase transformation temperature and initial temperature of drop. 
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RELATIONS FOR GASDYNAMIC DISCONTINUITIES FOR TWO-PHASE 

FLOWS OF A NONEQUILIBRIUM CONDENSING VAPOR 

A. M. Trevgoda UDC 533.6.011.5:536.423.4 

Equations of characteristics and relations along characteristics are presented along 
with relations for normal and oblique shock waves for a two-phase flow of a non- 
equilibrium condensing vapor. 

i. We will examine a two-dimensional steady-state flow of a nonequilibrium condensing 
vapor in the initial condensation zone in a one-velocity approximation. We assume the vapor 
phase to be a perfect gas. 

The system of conservation equations in this case has the form [i] 

d i v ( p ~ ) = O ,  p (~ .V)  W + v p = O ,  d i v ( p I ~ ) = O ,  (1)  

where 

~2 p'si' + p" (1 -- s) F (2)  9 - - O ' s + 9 " ( l - - s )  I ~ i  + -~-  ; i =  
O 

k p (3) 
p = p"RT"; i" -- 

k - - 1  fl" 
Excluding the derivatives of density from system (i) with the use of equation of state 

(3), we obtain 

( u2 _ a 2 ) & &_s Ov Ov = ma 2 , tp O7 + UV ay + uV-~x + (v2 - -  a~p) 0~/ tp 

where atp is the analog of the speed of sound in the two-phase medium, 

F/- k- -1  i =  / k - - 1  p'si'-t- p" (1 - -s )  i" 
atp = 1 - -  k s  ' 1 - -  k s  fl ' 

(4) 

(5) 

Scientific-Production Association of the I. I. Polzunov Central Scientific-Research Plan- 
ning, and Design Institute for Boilers and Turbines, Leningrad. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 47, No. 5, pp. 737-742, November, 1984. Original article submitted 
August 29, 1983. 

0022-0841/84/4705-1277508.50 �9 1985 Plenum Publishing Corporation 1277 


